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Let f # C[&1, 1] be real-valued. We consider the Lipschitz constants Ln( f ) of the
operators of best uniform polynomial approximation of degree n, n # N. It is proved
that lim supn # N Ln( f )=�, whenever f is not a polynomial. � 2000 Academic Press

1. STATEMENT OF THE RESULT AND NOTATIONS

Let C[&1, 1] denote the set of all real-valued continuous functions on
[&1, 1] and let f # C[&1, 1] be given. We denote by qn*( f ), n # N, its best
uniform approximation in the set Pn of algebraic polynomials of degree at
most n # N:

en=en( f ) :=& f &qn*( f )& :=min
q # Pn

& f &q& :=min
q # Pn

[ max
x # [&1, 1]

| f (x)&q(x)|].

By a result of Freud the operator of best polynomial approximation
qn*: C[&1, 1] � Pn is pointwise Lipschitz continuous:

Theorem A (Freud [4] or [3], p. 80). For each n # N there exists a
constant Ln( f )<� such that

&qn*( f )&qn*(g)&�Ln( f ) & f & g&, for all g # C[&1, 1]. (1)

Definition. For each n # N we call the smallest constant Ln( f ) such
that (1) holds the Lipschitz constant of qn* at f.

If f is a polynomial it is known that the sequence (Ln( f ))n is bounded
([6], p. 86). As the main result of this paper we shall prove the following
conjecture of Henry and Roulier ([6]):
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Theorem 1. If f is not a polynomial, then we have

lim sup
n � �

Ln( f )=�.

We note that our proof will not provide any concrete estimate for Ln( f ).

In what follows we will assume that f # C[&1, 1] is not a polynomial,
and thus en=en( f )>0 for all n # N0 . To prove Theorem 1 let

En=En( f ) :=[x # [&1, 1] : | f (x)&qn*( f, x)|=en], n # N0

and

_n(x)=_n( f, x) :=sign( f (x)&qn*( f, x)), n # N0 .

We decompose the set En into sign components En=�m
j=1 E j

n ,

E 1
n<E 2

n< } } } <E m
n , i.e., x< y for all x # E j

n , y # E j+1
n ,

such that _n(x) is constant on each E j
n , 1� j�m, and m=m(n)=m( f, n)

is minimal. The Lipschitz constant Ln( f ) can be estimated in terms of En

and _n(x).

Theorem 2. Let p # Pn be a polynomial satisfying

&1�max
E j

n

_n(x) p(x)�1, for all 1� j�m(n).

Then we have

Ln( f )�&p&�2.

Proof of Theorem 2. 1. For every given :>0 there exists some =>0
such that for U=(En) :=[x # [&1, 1] : dist(x, En)�=] we have

min
U= (En )

| f (x)&qn*( f, x)|�en �2

and

max
U= (En)

_n(x) p(x)�1+:.

It follows that

U=(E j
n) & U=(E k

n)=<, for all 1� j{k�m(n).
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For some $>0 we get

| f (x)&qn*( f, x)|�en&$, for all x # [&1, 1]"U=(En).

We choose * such that 0<*<1�2 min[$�&p&, en�&p&, en �(1+:)] and
obtain

| f (x)&qn*( f, x)+*p(x)|�en , for all x # [&1, 1]"U=(En),

and

| f (x)&qn*( f, x)+*p(x)|�en+(1+:)*, for all x # U=(En).

Further, for each 1� j�m(n), there exists some xj # E j
n such that

| f (xj)&qn*( f, xj)+*p(xj )|�en&*,

and

sign( f (xj)&qn*( f, xj)+*p(xj))=_n | E j
n
.

Thus, for each 1� j�m(n), there exists some open non-void interval
Ij /U=(E j

n) such that

en+(1+:)*�| f (x)&qn*( f, x)+*p(x)|�en&(1+:)*, for all x # I j ,

and

sign( f (x)&qn*( f, x)+*p(x))=_n |E j
n
, for all x # Ij .

2. To define a suitable function g= g(n, :) # C[&1, 1] in (1) we put

g(x) := f (x), for all x # [&1, 1]> .
m(n)

j=1

Ij .

If Ij=(a, b) and c :=(a+b)�2, we define g on I j by:

g(a) := f (a), g(b) := f (b), g(c)&qn*( f, c)+*p(c) :=(en+(1+:)*) _n |E j
n
,

and g&qn*( f )+*p is linear in [a, c] and [c, b].
The function g&qn*( f )+*p thus has the structure of an error function

of best polynomial approximation of degree n, and we obtain

qn*(g)=qn*( f )&*p.

By our construction we have

& f & g&�2(1+:)*
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and

&qn*( f )&qn*(g)&=* &p&�
&p&

2(1+:)
& f & g&,

which implies Ln( f )�&p&�2(1+:). Since :>0 was arbitrary, Theorem 2
is proved.

Thus, to prove our main result, it will be sufficient to find polynomials
p= pn # Pn , n # N, satisfying the side condition of Theorem 2 such that
&pn& becomes unbounded, as n increases.

We note that for each n, where qn*( f ){q*n+1( f ), we have m(n)=n+2.
Since f is not a polynomial, there exists a subsequence L of N such that
m(n)=n+2, n # L. In what follows we will only consider the subsequence
L. For convenience, we assume that n�4 for all n # L.

For every n # L let

!j=!j (n) :=min E j
n and 'j='j (n) :=max E j

n , 1� j�n+2,

denote the left and right end points of the sign components E 1
n , ..., E n+2

n .
Since they will always appear in connection with some n # L, we will
usually avoid an index n and just write !1 , ..., !n+2 and '1 , ..., 'n+2 .

For n # L we consider two types of problems:

Problem A(n, k, y). Let n # L, k # [1, ..., n+2] and y # E k
n be fixed.

Determine pk
n # Pn such that

&_n( y) pk
n( y) is maximal

subject to the condition that

max
x # En

_n(x) pk
n(x)�1.

By ([2], Lemma 1), each problem A(n, k, y) has a unique solution pk
n that

does not depend on y # E k
n . Further, there exists a corresponding set of

n+1 active points X k
n=[x j : 1� j�n+2, j{k] such that

xj # E j
n , for all 1� j�n+2, j{k,

and

_n(xj ) pn
k(x j )=max

E j
n

_n(x) pk
n(x)=1, for all 1� j�n+2, j{k.

(2)
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A solution of A(n, k, y) will in general not satisfy the side condition of
Theorem 2. Therefore, we will mainly consider the

Problem B(n, k). Let n # L, k # [1, ..., n+1] and y :=('k+!k+1)�2 be
fixed.

Determine pk
n # Pn such that

&_n |E n
k pk

n( y) is maximal

subject to the condition that

&1�max
E j

n

_n(x) pk
n(x)�1, for all 1� j�n+2.

By a simple compactness argument, each problem B(n, k) has a solution
pk

n # Pn . We will leave aside the question of uniqueness and merely choose
a solution pk

n for each n # L and 1�k�n+1.
Looking at a suitable interpolating polynomial p # P2 :

p(!k)= p(!k+1)=&_n | E n
k , and p(1)=_n |E n

k or p(&1)=_n |E n
k ,

we easily get that the optimal value of B(n, k) satisfies

&_n |E n
k pk

n( y)>1, for all 1�k�n+1, n # L.

Moreover, for the solution pk
n of B(n, k) there exists a corresponding set

Xk
n of n+1 active points:

Theorem 3. Let pk
n be a solution of B(n, k), n # L, 1�k�n+1. Then

there exists some index jk= jk(n) # [1, ..., n+2] such that for Ik=Ik(n) :=
[1, ..., n+2]"[ jk] the following assertions hold :

(a) For each j # Ik there exists some x j # E j
n such that

_n(xj) pk
n(xj)=max

E j
n

_n(x) pk
n(x) # [&1, 1].

(b) We have [k, k+1]/Ik and xk=!k , xk+1=!k+1 .

(c) If we renumber the set X k
n :=[x j , j # Ik]=[x$1< } } } <x$n+1] by

consecutive indices, then

pk
n(x$j)=&pk

n(x$j+1), whenever (x$j , x$j+1){(xk , xk+1)=(!k , !k+1),

and for y=('k+!k+1)�2

pk
n(!k)= pk

n(!k+1)=sign( pk
n( y))=&_n |E n

k .
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Proof of Theorem 3. Let pk
n be a solution of B(n, k). We define

I :=[1� j�n+2 : max
E j

n

_n(x) pk
n(x) # [&1, 1]],

and choose xj # E j
n , j # I, such that

_n(xj) pk
n(xj)=max

E j
n

_n(x) pk
n(x).

We introduce an additional index ky :=k+1�2 corresponding to the point
y=('k+!k+1)�2 and define a sign function _ on the set I _ [ky] by

_( j) :=sign( pk
n(xj )), j # I,

_(ky) :=&sign( pk
n( y)).

Next, we decompose I _ [ky] into sign components I _ [ky]=�m
j=1 I j

I1< } } } <I m,

such that _ is constant on each I j and m is minimal.
If we assume that m�n+1, then there exists a polynomial p # Pn such

that

sign( p(x))=sign( pk
n(x j)) for all x # E j

n , j # I,

and

sign( p( y))=&sign( pk
n( y)).

For some suitable *>0 the polynomial pk
n&*p # Pn satisfies the side

conditions of B(n, k) and has | pk
n( y)&*p( y)|>| pk

n( y)|, which yields a
contradiction.

It follows that m�n+2. Hence, we may choose a subset [ y1< } } } < yn+1]
/[xj , j # I] such that

pk
n( yj)=&pk

n( yj+1), whenever y � ( y j , yj+1),

pk
n( yj)= pk

n( yj+1)=sign( pk
n( y))=&_n |E n

k , if y # ( y j , yj+1).

If we assume that y< y1 then we must have k=1 and y1 # E 2
n . Further,

there must be n zeros of p1
n in ( y1 , yn+1), and therefore all local extrema

of p1
n are in ( y1 , yn+1). Since minE 1

n
| p1

n(x)|�1, | p1
n( y)|>1 and | p1

n( y1)|=1,
there must be a local extremum in (!1 , y1) and we obtain a contradiction.
It follows in the same way that y> yn+1 can not hold.
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Therefore, there exists a subinterval ( yj , yj+1) containing the point y. In
each of the n&1 subintervals where y � ( yj , yj+1) there must be a zero of
pk

n and it is not difficult to see that there are no further zeros in ( y1 , yn+1).
In case pk

n has exact degree n, there is one additional zero in R"( y1 , yn+1).
Between each pair of consecutive zeros there is exactly one local

extremum of pk
n and besides these there are no further local extrema.

Now, let ( yj , yj+1) be the subinterval such that y # ( yj , y j+1). It follows
that pk

n has no zero in [ y j , yj+1] and that pk
n( y j)=sign( pk

n( y))=&_n |E n
k

= pk
n( yj+1). Hence, there is exactly one local extremum in ( yj , yj+1). Since

minE n
k | pk

n|, minE n
k+1 | pk

n |�1, this implies that yj # E k
n and yj+1 # E k+1

n , and
thus

_n( yj) pk
n( yj)=max

E n
k

_n(x) pk
n(x)=&1

and

_n( y j+1) pk
n( y j+1)=max

E n
k+1

_n(x) pk
n(x)=1.

From here, it is easy to see that yj+1=!k+1 .
If we assume that !k< yj # E k

n then, since _n(!k) pk
n(!k)�&1 and

_n( y j) pk
n( yj)=&1, there must be at least two local extrema in [!k , yj+1]

and therefore at least one zero in [!k , yj+1], and thus in [!k , yj]. This
implies that there are at least two zeros in [!k , y j], which yields a contra-
diction to the position of the zeros of pk

n derived above.
Choosing x$1 := y1 , ..., x$n+1 := yn+1 and defining Ik=[1, ..., n+2]"[ jk]

by [xj , j # Ik] :=[x$1 , ..., x$n+1], Theorem 3 is proved.

We introduce some notations and collect some simple properties for the
solutions pk

n and X k
n=[xj , j # Ik] of a given problem B(n, k), n # L,

1�k�n+1.

(a) In what follows we will use both notations X k
n=[x j , j # Ik] and

Xk
n=[x$1< } } } <x$n+1] for the solution of B(n, k).
For the sake of simplicity we shall usually avoid an index n for Ik=Ik(n)

and jk= jk(n) as well as n or k for the points xj=xj (n, k), x$j=x$j(n, k) # X k
n .

(b) Let x$&=x j # E j
n /[! j , 'j], where 1�&�n+1. Then we put

!$& :=!j and '$& :='j , i.e., x$& # [!$& , '$&]. We note that j=& if j< jk , and
j=&+1 if j> jk .

Again, we will usually avoid indices n or k for the points !$&=!$&(n, k)
and '$&='$&(n, k), 1�&�n+1.

Further, let k$=k$(n, k) be defined by x$k$=xk=!k . We get k$=k&1
or k$=k.
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(c) With these notations, the following properties of a solution pk
n

and the corresponding active sets Ik , X k
n=[xj , j # Ik]=[x$1< } } } <x$n+1]

may easily be derived from Theorem 3:
The polynomial pk

n has exactly n&1 zeros `1 , ..., `k$&1 , `k$+1 , ..., `n in
(x$1 , x$n+1), where exactly one zero is in every subinterval (x$j , x$j+1),
1� j�n, except for the subinterval (x$k$ , x$k$+1)=(xk , xk+1)=(!k , !k+1):

x$1<`1<x$2< } } } <`k$&1<x$k$ :=xk=!k<!k+1

!k+1=xk+1=: x$k$+1<`k$+1< } } } <x$n<`n<x$n+1.

In case pk
n has exact degree n, there exists one additional zero `0 # R"

[x$1 , x$n+1]. We shall avoid an index n or k for the zeros `j=`j (n, k).

(d) Further, we may divide Ik into at most three blocks of consecutive
indices such that the value of maxE j

n
_n(x) pk

n(x) is constant for j in each of
the blocks. If, for example, jk<k then we have

max
E j

n

_n(x) pk
n(x)=1, for all 1� j< jk ,

max
E j

n

_n(x) pk
n(x)=&1, for all jk< j�k,

max
E j

n

_n(x) pk
n(x)=1, for all k+1� j�n+2.

2. PROOF OF THEOREM 1

We assume that (Ln( f ))n is bounded. By Theorem 2 this implies that for
some constant M<�, not depending on n # L, we have

&p&�M (3)

and thus, by the Bernstein inequality ([8], p. 118),

| p$(x)|�
n

- 1&x2
M, x # [&1, 1], (4)

for any polynomial p # Pn , n # L, satisfying the side condition

&1�max
E j

n

_n(x) p(x)�1, for all 1� j�n+2.

In particular, (3) and (4) hold for the solution pk
n of any of the problems

B(n, k), n # L, 1�k�n+1.
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Our proof turns out to be elementary but quite technical. Therefore it is
split into several lemmas, which are valid under the assumption that (3)
holds and which will finally lead to a contradiction.

Throughout the proof, C and D are used to denote absolute positive
constants that may depend only on the constant M in (3). We note that the
symbols C, D used in different lines of the proof may have different values.

In a first step we control the distances between the various points
induced by the sets E j

n and the problems B(n, k). To this aim we introduce
``standard distances'' dn( j, &) that behave approximately like |cos( j?�n)&
cos(&?�n)| for j{&.

Lemma 1. For each n # N let

dn( j) :=
min[ j, n+3& j]

n2 , 1� j�n+2

and dn( j, &)=dn(&, j)= :
&

l= j

dn(l ), 1� j�&�n+2.

Then there exist constants C1 , D1>0, not depending on n # L or 1�k�n+1,
such that the following statements hold.

Let pk
n and X k

n=[x j , j # Ik]=[x$1< } } } <x$n+1] be a solution of B(n, k)
and `1 , ..., `k$&1 , `k$+1 , ..., `n denote the zeros of pk

n in [x$1 , x$n+1 ].
Further, let

Yj=Yj (n, k) :=[xj , !j , 'j , x$j , !$j , '$j , ` j], for all 1� j�n+2,

where each of the points xj , x$j , !$j , '$j , `j occurs only if it is defined in connec-
tion with pk

n , X k
n .

(a) For all 1� j, &�n+2 and all yj # Yj and y& # Y& we have

| yj& y& |�C1 dn( j, &).

(b) For all 1� j, &�n+2 and all yj # Yj and y& # Y& we have

| yj& y& |�D1 dn( j, &),

whenever there exists a point x # X k
n and a zero ` # [&1, 1] of pk

n both
between yj and y& .
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Proof of Lemma 1. Let + denote the arcsine distribution of [&1, 1],
i.e.,

d+(x)=
2

?

1

- 1&x2
, x # [&1, 1].

1. For every n # L we consider the partitions !0 :=&1, !1 , ..., !n+2 ,
!n+3 :=1 induced by the left end-points of E 1

n , ..., E n+2
n . We show that

there exists some C>0, not depending on n # L, such that

+([!j , !j+1])�
C
n

, for all 0� j�n+2.

If not, we may find closed intervals, say Jn /[&1, 1], n # L, such that
E &

n "Jn {< for all 1�&�n+2, and lim supn # L n+(Jn)=�.
Then, by a slight modification of the proof of ([1], Theorem 6), there

exist polynomials qn # Pn such that qn(x){0 for x # Jn and

lim inf
n # L

( sup
x # [&1, 1]"Jn

|qn(x)| )�&qn&=0.

It is easy to see that this contradicts our principal assumption (3).

2. Let pk
n and X k

n be a solution of B(n, k), n # L, 1�k�n+1. It
follows by (4) that there exists some D>0, not depending on n # L or
1�k�n+1, such that for all x # X k

n and each zero ` # [&1, 1] of pk
n we

have

+([min(`, x), max(`, x)])�
D
n

.

3. For every n # L and 1�k�n+1 we recall the interlacing proper-
ties of the end points of E 1

n , ..., E n+2
n and the points xj , `j induced by the

solution of B(n, k).
Let yj # Yj , y& # Y& , where yj=cos(, j)� y&=cos(,&) and , j , ,& # [0, ?].

By the first part, it is easy to see that for some C>0, not depending on
1� j, &�n+2 or n # L, we have

+([ yj , y&])�C
|&& j |+1

n
,

and thus for some C>0

|,&&, j |�C
|&& j |+1

n
.
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In the same way it follows that

|?&,j |�C
j
n

, |,j&0|�C
n+3& j

n
,

|?&,& |�C
&
n

, |,&&0|�C
n+3&&

n
.

Suppose that there exist x # X k
n and a zero ` of pk

n such that y j�x, `� y& .
Then, by the second part, there exists some D>0, not depending on j, &
or n # L such that

+([ yj , y&])�D
|&& j |+1

n
,

+([&1, y&])�D
&
n

, +([ yj , 1])�D
n+3& j

n
.

Therefore, we have for some D>0

|,&&,j |�D
|&& j |+1

n
,

|?&,& |�D
&
n

, |,j&0|�D
n+3& j

n
.

The estimates stated in Lemma 1 now follow by elementary but somewhat
lengthy calculations from

| y&& yj |= } |
,&

,j

sin(t) dt } .
The following Lemma 2 provides some general estimates on sums of the

dn( j, &) introduced in Lemma 1.

Lemma 2. There exist C2 , D2>0 not depending on n�2 or 1� j, l�n+2
such that

(a) D2 log(n)� :
n+2

&=1
&{ j

dn(&)
dn( j, &)

�C2 log(n),

(b) :
n+2

&=1
&{ j

dn( j)
dn( j, &)

�C2 log(n),

120 WOLFGANG GEHLEN



(c) :
n+1

&=2

dn(&)

- dn(1, &) dn(&, n+2)
�C2 ,

(d) :
n+2

&=1
&{ j

dn(&)2

dn( j, &)2 , :
n+2

&=1
&{ j

dn(&) dn( j)
dn( j, &)2 �C2 ,

(e) :
l<&< j

dn(&)
dn( j, &)

�D2 log( j&l )&C2 .

Proof of Lemma 2. The proofs of parts (a), (b), (c), (d) are given in
([5], Lemma 2). Part (e) follows similarly to part (a).

We show that for the solutions X k
n=[x j , j # Ik] of B(n, k) the products

> j # Ik , j{k |xk&xj | become uniformly small, as n # L increases.

Lemma 3. There exist constants $>0 and C3>0, not depending on n # L
or 3�k�n, such that for the solution X k

n=[x j , j # Ik]=[x$1< } } } <x$n+1]
of B(n, k) we have

`

j{k
j # Ik

|xk&xj |= `
n+1

j=1
j{k$

|xk&x$j |�
C3

n$

|xk&xk+1 |
dn(k)2

1
2n .

Proof of Lemma 3. The solution pk
n of B(n, k) has exactly n&1 zeros

`1 , ..., `k$&1 , `k$+1 , ..., `n in [x$1 , x$n+1] which are ordered in the following
way

x$1<`1<x$2< } } } <`k$&1<x$k$=xk=!k<!k+1

!k+1=xk+1=x$k$+1<`k$+1< } } } <x$n<`n<x$n+1 .

In case pk
n has exact degree n, there is one additional zero `0 � [x$1 , x$n+1].

1. We show that for some C>0, not depending on n # L or 3�k�n,
we have

|(xk&x$1)(xk&x$n+1)| `
n

j=1
j{k$

|xk&`j |�C
1
2n .

121UNBOUNDEDNESS OF LIPSCHITZ CONSTANTS



For the sake of shortness we give the computation only for the case that
pk

n has exact degree n. In case pk
n has exact degree n&1, we just have to

leave out the terms appearing in [ } } } ]. If pk
n(x)=ak

n xn+ } } } , ak
n {0, then

the monic polynomial

q(x) :=
pk

n(x)
ak

n[x&`0]
# Pn&1

has alternating signs at the n points xl of X k
n "[xk] and absolute value

|q(xl)|=
1

|ak
n[x l&`0] |

�
1

|ak
n | [ |`0 |+1]

.

It follows from extremal properties of the Chebyshev polynomials ([3], p. 77)
that

1
|ak

n| [ |`0 |+1]
�

1
2n&2

and, therefore,

|(xk&x$1)(xk&x$n+1)| `
n

j=1
j{k$

|xk&`j |

=|(xk&x$1)(xk&x$n+1)|
| pk

n(xk)|
|ak

n | [ |xk&`0 |]

=|(xk&x$1)(xk&x$n+1)|
1

|ak
n| [ |xk&`0 |]

�|(xk&x$1)(xk&x$n+1)| { |`0 |+1
|xk&`0 |=

1
2n&2

�C
1
2n ,

for some C>0 which, in particular, does not depend on the position of
`0 � [x$1, x$n+1].
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2. We estimate

{ `
n

j=2
j{k$

|xk&xj$ |={ `
n

j=1
j{k$

|xk&`j |=
&1

=
|xk&xk+1 |

|(xk&`k$&1)(xk&`k$+1)|
`

k$&1

j=2

|xk&x$j |
|xk&`j&1 |

`
n

j=k$+2

|xk&x$j |
|xk&`j |

=
|xk&xk+1 |

|(xk&`k$&1)(xk&`k$+1)|
`

k$&1

j=2
\1&

|x$j&`j&1 |
|xk&`j&1 |+

_ `
n

j=k$+2 \1&
|x$j&`j |
|xk&`j |+ .

By Lemma 1 we have

|xk&xk+1 |
|(xk&`k$&1)(xk&`k$+1)|

�
|xk&xk+1 |

D2
1 dn(k, k$&1) dn(k, k$+1)

�
|xk&xk+1 |
D2

1dn(k)2 .

Further, Lemma 1 and Lemma 2(a) yield that

`
k$&1

j=2
\1&

|x$j&`j&1 |
|xk&`j&1 |+ `

n

j=k$+2
\1&

|x$j&`j |
|xk&`j |+

�exp {& :
k$&1

j=2

|x$j&`j&1 |
|xk&`j&1 |

& :
n

j=k$+2

|x$j&`j |
|xk&`j |=

�exp {&
D1

C1 \ :
k$&1

j=2

dn( j, j&1)
dn(k, j&1)

+ :
n

j=k$+2

dn( j )
dn(k, j )+=

�
C
n$ ,

for some suitable C, $>0, not depending on n # L or 3�k�n.

3. Putting part one and part two together, we obtain that

`
n+1

j=1
j{k

|xk&x j |�
C
n$

|xk&xk+1 |
dn(k)2

1
2n ,

for some C=: C3>0, and Lemma 3 is proved.

Next, we consider a sequence of sign components E k
n , where k=k(n),

n # L. We provide a sufficient condition to control the distances of E k
n to

Ek&1
n and E k+1

n from below, as n # L increases.
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Lemma 4. There exists some D4>0 with the following property:
Let k=k(n) # [3, ..., n], n # L, be a sequence of indices such that for every

=>0

lim inf
n # L

n=2n dn(k)3 `
n+2

j=1
| j&k|�2

|!k&! j |>0.

Then we have

|!k&'k&1 |, |!k+1&'k |>D4 dn(k), for all k=k(n), n # L.

Proof of Lemma 4. For n # L and k=k(n) let us now denote by pk
n

the solution of A(n, k, !k), and by X k
n=[xj # E j

n : 1� j�n+2, j{k] the
corresponding set of active points:

_n(xj) pk
n(xj)=max

E j
n

_n(x) pk
n(x)=1, for all 1� j�n+2, j{k.

We avoid an index n or k=k(n) for the xj=xj (n, k) # X k
n .

From the properties (2) of the solution of a problem A(n, k, y) it is not
difficult to see that

pk
n('k&1)= pk

n(!k+1)=&_n |E n
k ,

and

| pk
n(x)|�1, for all x # ['k&1 , !k+1].

1. We first show that limn # L &pk(n)
n &=�.

Assume that &pk
n &, k=k(n), n # L$, remains bounded for a subsequence

L$ of L. Then, ([5], Lemma 3) yields that for some $, C>0 not depending
on n # L$ we must have

`
n+2

j=1
| j&k|�2

|!k&x j |�
C
n$

1
dn(k)2

1
2n , for all n # L$.

We note that the boundedness of &pk
n&, k=k(n), n # L$, together with

Lemma 1 is sufficient to prove this relation, although ([5], Lemma 3) is
stated under the assumption that the solutions of all possible problems
A(n, j, y) remain uniformly bounded.
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On the other hand, since |!k&xj |� |!k&!j+1 | for j�k&3, we have

`
n+2

j=1
| j&k|�2

|!k&x j |� `
k&2

j=1

|!k&xj | `
n+2

j=k+2

|!k&!j |

�|!k&xk&2 | `
k&2

j=2

|!k&!j | `
n+2

j=k+2

|!k&! j |

�
|!k&xk&2 |

|!k&!1 |
`

n+2

j=1
| j&k|�2

|!k&!j |

�
|!k&xk&2 |

2
`

n+2

j=1
| j&k|�2

|!k&!j |.

We assumed that &pk
n &, k=k(n), n # L$, is bounded, and we have

| pk
n(xk&2)& pk

n(xk&1)|=2. The Bernstein inequality thus yields that for
some D>0

+([xk&2 , xk&1])�
D
n

, for all k=k(n), n # L$,

where + denotes the arcsine distribution of [&1, 1]. By the arguments of
Lemma 1 we therefore get that for some D>0, not depending on n # L$, we
have

|!k&xk&2 |� |xk&1&xk&2 |�Ddn(k),

and thus

`
n+2

j=1
| j&k|�2

|!k&x j |�
Ddn(k)

2
`

n+2

j=1
| j&k|�2

|!k&! j |.

Choosing ==$�2 in the assumption of Lemma 4, we obtain a contradiction.

2. If we put

mn :=min
E n

k
| pk

n(x)|, for all k=k(n), n # L,

then mn�1 and the polynomial pk
n �mn satisfies the side condition of

Theorem 2:

&1�max
E j

n

pk
n(x)
mn

_n(x)�1, for all 1� j�n+2.
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It follows by (3) that

&pk
n &

mn
�M, for all n # L,

and the first part implies that limn # L mn=�.
By the Bernstein-inequality (4) we have

} ( pk
n)$ (x)
mn }� n

- 1&x2
M, for all x # [&1, 1].

Since | pk
n(!k)|�mn , | pk

n('k)|�mn�1 and | pk
n('k&1)|�mn=| pk

n(!k+1)|�mn=
1�mn tend to zero, there exists some D>0 such that

+(['k&1 , !k]), +(['k , !k+1])�
D
n

, for all k=k(n), n # L.

By the arguments of Lemma 1, we finally get that for some D4>0

|!k&'k&1 |, |!k+1&'k |>D4 dn(k), for all k=k(n), n # L.

Next, we will prepare the construction of a special sequence of indices
fulfilling the assumptions of Lemma 4. It will be finally given in Lemma 8.

In Lemmas 5, 6, and 7 we consider the solutions X 1
n=[xj , j # I1]=

[x$1< } } } <x$n+1 ] of the special problems B(n, 1), n # L. We note that, by
Theorem 3, x1=x$1=!1 and x2=x$2=!2 for all n # L.

First, we show that most of the products >n+1
&=1, &{ j |x$j&x$& |, 1� j�n+1,

do not become too small for our solution X 1
n , as n # L increases.

Lemma 5. Suppose that =>0. For the solutions X 1
n=[xj , j # I1]=

[x$1< } } } <x$n+1] of B(n, 1), n # L, let an(=) denote the number of indices
3� j�n+1 such that

`
n+1

&=1
&{ j

|x$j&x$& |�
1
n=

1
dn( j)

1
2n .

Then we have

lim
n # L

an(=)
n

=0.
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Proof of Lemma 5. Suppose that there exists some a>0 and a sub-
sequence L$ of L such that

an(=)
n

�a for all n # L$.

For some C=C(a)>0 we have that for all sufficiently large n # L

1�dn( j)�Cn, for all an�4� j�(n+2)&an�4.

It follows that among the indices an�4� j�(n+1)&an�4 there exist at
least an�4 indices j such that

`
n+1

&=1
&{ j

|x$j&x$& |�
C
n= n

1
2n for all sufficiently large n # L$.

If a1
n denotes the leading coefficient of p1

n , then the sign structure of p1
n(x$j ),

1� j�n+1:

p1
n(x$1)= p1

n(x$2) and p1
n(x$j )=&p1

n(x$j+1), 2� j�n,

and the Lagrange interpolation formula yield that

|a1
n|= } &1

>n+1
&=1, &{1 |x$1&x$& |

+ :
n+1

j=2

1
>n+1

&=1, &{j |x$j&x$& | } .
Since

`
n+1

&=1
&{1

|x$1&x$& |> `
n+1

&=1
&{2

|x$2&x$& |,

we get for all sufficiently large n # L$

|a1
n|� :

n+1

j=3

1
>n+1

&=1, &{j |x$j&x$& |
�

an
4

1
C

n=

n
2n�

a
4C

n=2n.

It follows that

&p1
n&�|a1

n |
1

2n&1�
a

2C
n=, for all sufficiently large n # L$,

becomes unbounded for n # L$, which contradicts our principal assumption
(3). Hence, Lemma 5 is proved.

The proof of Lemma 5 yields that p1
n has exact degree n for all n # L.
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For X 1
n=[x$1< } } } <x$n+1] we now compare the products

`
n+1

&=1
|&& j |�2

|x$j&x$& | to the products `
n+1

&=1
|&& j |�2

|x$j&!$& |.

We recall that !$&=!$&(n, 1) denotes the left end point of the sign compo-
nent of En that contains x$& , 1�&�n+1. In geometric average over
3� j�n&1 the first product is no larger than the second multiplied by a
constant factor, as n # L increases:

Lemma 6. Let X 1
n=[x j , j # I1]=[x$1< } } } <x$n+1] be the solution of

B(n, 1), n # L. Then there exists a constant C6>0, not depending on n # L,
such that

\ `
n&1

j=3
{ `

n+1

&=1
|&& j |�2

|x$j&x$& |={ `
n+1

&=1
|&& j |�2

|x$j&!$& |=
&1

+
1�n

�C6 .

Proof of Lemma 6. 1. For the solutions X 1
n=[x$1< } } } <x$n+1] of

B(n, 1), n # L, we put

;&=;&(n) :=|x$&&!$& |, for all 1�&�n+1.

Lemma 1 yields ;&�C1 dn(&) for all n # L, 1�&�n+1.
Then, for every n # L and 3� j�n&1, we have

{ `
n+1

&=1
|&& j | �2

|x$j&x$& |={ `
n+1

&=1
|&& j |�2

|x$j&!$& |=
&1

= `
j&2

&=1
\1&

|x$&&!$& |
|x$j&!$& |+ `

n+1

&= j+2
\1+

|x$&&!$& |
|x$j&!$& |+

�exp {& :
j&2

&=1

;&

|x$j&!$& |
+ :

n+1

&= j+2

;&

|x$j&!$& |= . (5)

2. Since | p1
n(x$1)|=| p1

n(x$2)|=1<| p1
n( y)|, y=('1+!2)�2, there must

be a local extremum of p1
n in (x$1 , x$2 ). Therefore, we obtain that the zeros

`0 , `2 , ..., `n of p1
n are arranged in the following way:

`1 :=`0<x$1<x$2<`2<x$3< } } } <x$n<`n<x$n+1 .

For convenience of notation we put `1 :=`0 .
The crucial step of the proof will be to replace the sums occuring in the

exponential term (5) by sums involving the zeros `j .
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There exists some C>0, not depending on n # L or 3� j�n&1, such
that the following estimates hold

} :
j&2

&=1

;&

|x$j&!$& |
& :

j&1

&=2

;&

|`j&x$& | }�C,

} :
n+1

&= j+2

;&

|x$j&!$& |
& :

n

&= j+1

;&

|`j&x$& | }�C.

We give the computation only for the first difference. By Lemma 1 we have

} :
j&2

&=1

;&

|x$j&!$& |
& :

j&1

&=2

;&

|`j&x$& | }
�

;1

|x$j&!$1 |
+

;j&1

|`j&x$j&1 |
+ :

j&2

&=2

;&( |x$&&!$& |+|x$j&`j | )
|(x$j&!$&)(` j&x$&)|

�
C1 dn(1)

D1 dn( j, 1)
+

C1 dn( j&1)
D1 dn( j, j&1)

+
C 2

1

D2
1

:
j&2

&=2

dn(&)(dn(&)+dn( j))
dn( j, &) dn( j, &)

.

Lemma 2(d) yields that the difference may be estimated by some C>0.

3. Replacing the sums in (5) according to the second part of the
proof we get

`
n&1

j=3 { `
n+1

&=1
|&& j |�2

|x$j&x$& |={ `
n+1

&=1
|&& j | �2

|x$j&!$& |=
&1

�exp {2C(n&3)+ :
n&1

j=3
\& :

j&1

&=2

;&

|`j&x$& |
+ :

n

&= j+1

;&

|`j&x$& |+= .

Further, we have x$&&`j<0, &< j, and x$&&`j>0, &> j. For the sum
occuring in the exponential term above we therefore get

} :
n&1

j=3
\& :

j&1

&=2

;&

|`j&x$& |
+ :

n

&= j+1

;&

|`j&x$& |+}
= } :

n&2

&=2

;& :
n&1

j=&+1

1
|x$&&` j |

& :
n

&=4

;& :
&&1

j=3

1
|x$&&`j | }

� :
n&2

&=4 };& \ :
n&1

j=&+1

1
x$&&` j

+ :
&&1

j=3

1
x$&&`j+}

+ :
3

&=2

;& :
n&1

j=&+1

1
|x$&&`j |

+ :
n

&=n&1

;& :
&&1

j=3

1
|x$&&`j |

.
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Lemma 1 and Lemma 2(b) yield that

} :
n&1

j=3
\& :

j&1

&=2

;&

|`j&x$& |
+ :

n

&= j+1

;&

|`j&x$& |+}
� :

n&2

&=4 };& \ :
n&1

j=&+1

1
x$&&`j

+ :
&&1

j=3

1
x$&&`j+}

+
C1

D1

:
3

&=2

:
n&1

j=&+1

dn(&)
dn(&, j)

+ :
n

&=n&1

:
&&1

j=3

dn(&)
dn(&, j)

� :
n&2

&=4
};& \ :

n&1

j=&+1

1
x$&&`j

+ :
&&1

j=3

1
x$&&`j+}+4

C1

D1

C2 log(n).

Since |x$&&`1 |�|x$&&`2 | and by Lemma 1 and Lemma 2(a), we get

} :
n&1

j=3
\& :

j&1

&=2

;&

|`j&x$& |
+ :

n

&= j+1

;&

|`j&x$& |+}
� :

n&2

&=4
};& :

n

j=1

1
x$&&`j }

+ :
n&2

&=4

;& \ 1
|x$&&`n |

+
1

|x$&&`& |
+

1
|x$&&`2 |

+
1

|x$&&`1 |+
+4

C1

D1

C2 log(n)

� :
n&2

&=4

;& } :
n

j=1

1
x$&&`j }

+
C1

D1

:
n&2

&=4

dn(&) \ 1
dn(&, n)

+
1

dn(&)
+

1
dn(&, 2)

+
1

dn(&, 2)+
+4

C1

D1

C2 log(n)

� :
n&2

&=4

;& } :
n

j=1

1
x$&&`j }

+
C1

D1

(C2 log(n)+(n&5)+C2 log(n)+C2 log(n)+4C2 log(n))

� :
n&2

&=4

;& } :
n

j=1

1
x$&&`j }+Cn,

for some C>0, not depending on n # L.
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Since | p1
n(x$&)|=1, we can now estimate the remaining sum by (4) and

Lemma 2(c)

:
n&2

&=4

;& } :
n

j=1

1
x$&&`j }= :

n&1

&=4

;& } ( p1
n)$ (x$&)

p1
n(x$&) }� :

n&2

&=4

;&
Mn

- 1&(x$&)
2

�C1

Mn
D1 \ :

n&2

&=4

dn(&)

- dn(&, n+2) dn(&, 1)+�Cn,

for some C>0, not depending on n # L.
This implies the estimate of Lemma 6 with some suitable constant C6 .

Lemma 6 yields

Lemma 7. Suppose that =>0. For the solutions X 1
n=[x j , j # I1]=[x$1

< } } } <x$n+1] of B(n, 1), n # L, let bn(=) denote the number of indices
3� j�n&1 such that

`
n+1

&=1
|&& j |�2

|x$j&!$& |�
1
n= `

n+1

&=1
|&& j | �2

|x$j&x$& |.

Then we have

lim inf
n # L

bn(=)
n

>0.

Proof of Lemma 7. For every n # L there exist at least n&3&bn(=)
indices 3� j�n&1 such that

`
n+1

&=1
|&& j |�2

|x$j&x$& |�n= `
n+1

&=1
|&& j | �2

|x$j&!$& |.

Since |x$j&x$& |�|x$j&!$& | for all &� j+2 and |x$j&x$&&1 |�|x$j&!$& | for all
&� j&2, we obtain that with some D>0

`
n+1

&=1
|&& j |�2

|x$j&x$& |� `
j&2

&=1

|x$j&x$& | `
n+1

&= j+2

|x$j&!$& |

�|x$j&x$j&2 | `
j&2

&=2

|x$j&!$& | `
n+1

&= j+2

|x$j&!$& |
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�
|x$j&x$j&2 |

|x$j&!$1 |
`

n+1

&=1
|&& j | �2

|x$j&!$& |

�
D1

2
dn( j) `

n+1

&=1
|&& j |�2

|x$j&!$& |

�D
1
n2 `

n+1

&=1
|&& j | �2

|x$j&!$& |,

for all n # L and all 3� j�n&1.
Using these two estimates and Lemma 6 we get

C6� `
n&1

j=3
\{ `

n+1

&=1
|&& j | �2

|x$j&x$& |={ `
n+1

&=1
|&& j |�2

|x$j&!$& |=
&1

+
1�n

�(n=) (n&3&bn (=))�n \D
n2+

bn (=)�n

, for all n # L,

which leads to a contradiction if we assume that lim infn # L(bn(=)�n)=0.
Hence, Lemma 7 is proved.

Next, we define a special sequence of indices k*=k*(n), n # L.

Definition. For n # L we choose k*=k*(n) # [3, ..., n] such that

dn(k*)3 `
n+2

&=1
|&&k*|�2

|!k*&!& |= max
3� j�n

dn( j)3 `
n+2

&=1
|&& j |�2

|! j&!& |, (6)

where, for every n # L, the !1 , ..., !n+2 denote the left end points of
E 1

n , ..., E n+2
n .

Lemma 8. Let k*=k*(n), n # L, be defined by (6).

(a) Then, for every =>0, we have

lim inf
n # L

n=2n dn(k*)3 `
n+2

&=1
|&&k*|�2

|!k*&!& |>0.

(b) With D4>0 from Lemma 4 it follows that for k*=k*(n)

|!k*&'k*&1 |, |!k*+1&'k* |�D4 dn(k*), for all n # L. (7)
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Proof of Lemma 8. Let =>0 be given.

1. We first prove a corresponding estimate for a suitable sequence of
points xk # X 1

n , where k=k(n), n # L.
For the solutions X 1

n=[xj , j # I1]=[x$1< } } } <x$n+1] of B(n, 1), n # L,
we have by Lemma 5 and Lemma 7

lim
n # L

an(=�4)�n=0 and b(=) :=lim inf
n # L

bn(=�4)�n>0.

We recall that for every n # L we denote by !j1
the left end point of E j1

n ,
where j1= j1(n) and I1=I1(n)=[1, ..., n+2]"[ j1].

Thus, for each n # L sufficiently large, there exist at least b(=) n�2 indices
l among the indices 3�l�n&1 such that

`
n+1

&=1
&{l

|x$l&x$& |�
1

n=�4

1
dn(l)

1
2n ,

and

`
n+1

&=1
|&&l |�2

|x$l&!$& |�
1

n=�4 `
n+1

&=1
|&&l |�2

|x$l&x$& |.

For all sufficiently large n # L we may therefore choose such an index
l=l(n) such that |l(n)& j1(n)|�b(=) n�4. Using Lemma 1, we obtain that

|x$l&!j1
|>D(=), for all n # L,

for some suitable D(=)>0, depending on = but not on n # L.
For every n # L we now define k=k(n), n # L, by xk(n)=x$l(n) # X 1

n . It
follows that k(n)=l(n) if j1(n)>k(n) and k(n)=l(n)+1 if j1(n)<k(n). In
particular, 3�k(n)�n for all n # L and limn # L |k(n)& j1(n)|=�. Lemma
1 yields that for k=k(n) and l=l(n)

`
n+2

&=1
|&&k|�2

|xk&!& |=|x$l&!j1
| `

n+1

&=1
|&&l|�2

|x$l&!$& |

�D(=)
1

n=�4 `
n+1

&=1
|&&l|�2

|x$l&x$& |

�D(=)
1

n=�4

1
|(x$l&x$l&1)(x$l&x$l+1 )|

`
n+1

&=1
&{l

|x$l&x$& |

�
D(=)
C 2

1

1
n=�2

1
dn(l )3

1
2n , for all sufficiently large n # L.
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Since |k(n)&l(n)|�1, we get that for some suitable D(=)>0

`
n+2

&=1
|&&k|�2

|xk&!& |�
D(=)
n=�2

1
dn(k)3

1
2n , for all sufficiently large n # L. (8)

2. Next, we show that the points xk # X 1
n in (8) may be replaced by

the corresponding !k # E k
n , where k=k(n), n # L.

For the sequence k=k(n), n # L, defined in part 1, let pk
n and X k

n denote the
solution of B(n, k). We use the notation X k

n=[ yj , j # Ik]=[ y$1< } } } < y$n+1]
to avoid confusion with the solutions X 1

n=[x j , j # I1]=[x$1< } } } <x$n+1]
of B(n, 1).

The polynomial pk
n has exactly n&1 zeros `1 , ..., `k$&1 , `k$+1 , ..., `n in

[ y$1 , y$n+1] which are ordered in the following way

y$1<`1< y$2< } } } <`k$&1< y$k$ := yk=!k<!k+1

!k+1= yk+1=: y$k$+1<`k$+1< } } } < y$n<`n< y$n+1 ,

and there may exist one additional zero `0 � [ y$1 , y$n+1 ] of pk
n .

We have maxE n
k _n(x) pk

n(x)=&1, which implies that

1=| pk
n(!k)|�| pk

n(x)|�M, for all x # E k
n and k=k(n), n # L.

Therefore, there exists some D>0 such that

`
n

&=1
&{k$

|!k&`& |
|xk&`& |

�
1
M { |xk&`0 |

|!k&`0 |=�D, for all n # L. (9)

Here, the factor in [ } } } ] appears only if pk
n has exact degree n. Since

3�k=k(n)�n, it is not difficult to check that [ } } } ] is bounded away
from 0 by some positive constant, as n # L increases.

We shall prove that there exists some C>0 such that for k=k(n)

`
n+2

&=1
|&&k|�2

|xk&!& |
|!k&!& |

`
n

&=1
&{k$

|!k&`& |
|xk&`& |

�C, for all n # L. (10)

For the sake of shortness we will only consider the case jk(n)>k(n), i.e.,
k=k$:
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`
n+2

&=1
|&&k|�2

|xk&!& |
|!k&!& |

`
n

&=1
&{k

|!k&`& |
|xk&`& |

= `
k&2

&=1
\1+

|xk&!k |
|!k&!& |+ `

k&1

&=1
\1&

|xk&!k |
|xk&`& |+

_ `
n+2

&=k+2
\1&

|xk&!k |
|!k&!& |+ `

n

&=k+1
\1+

|xk&!k |
|xk&`& |+

�exp { :
k&2

&=1

|xk&!k | ( |xk&`& |&|!k&!& | )
|(!k&!&)(xk&`&)|

+ :
n

&=k+2

|xk&!k | ( |!k&!& |&|xk&`& | )
|(!k&!&)(xk&`&)|

&
|xk&!k |

|xk&`k&1 |
+

|xk&!k |
|xk&`k+1 |

&
|xk&!k |

|!k&!n+1 |
&

|xk&!k |
|!k&!n+2 |=

�exp { :
k&2

&=1

|xk&!k | ( |xk&!k |+ |`&&!& | )
|(!k&!&)(xk&`&)|

+ :
n

&=k+2

|xk&!k | ( |xk&!k |+ |`&&!& | )
|(!k&!&)(xk&`&)|

+
|xk&!k |

|xk&`k+1 |= .

The crucial part here is to obtain control from below for the distances
|!k&!& | appearing in the denominators.

Since limn # L |k(n)& j1(n)|=�, we have [k(n)&2, k(n)&1, k(n), k(n)+1]
/I1(n) for all sufficiently large n # L. Thus, there exists a point of X1

n and a zero
of p1

n in [!k&2 , !k]#[xk&2 , xk&1] and in [!k , !k+2]#[xk , xk+1].
Lemma 1 and Lemma 2(d) yield that for some suitable C>0

�exp {2C 2
1

D2
1

:
n+2

&=1
&{k

dn(k)(dn(k)+dn(&))
dn(k, &)2 +

C1

D1

dn(k)
dn(k, k+1)=

�C, for all sufficiently large n # L.

We note that the case jk(n)>k(n) is somewhat more inconvenient to write
down but may be treated in exactly the same manner.
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With some suitable C>0 we have by (9), (10) and (8)

`
n+2

&=1
|&&k|�2

|!k&!& |�
1
C

`
n+2

&=1
|&&k| �2

|xk&!& |

�
D(=)

C
1

n=�2

1
dn(k)3

1
2n , for all sufficiently large n # L.

By the definition of k*=k*(n), n # L, this implies the first part of Lemma 8.
The second part then follows immediately from Lemma 4, and Lemma 8 is

proven.

We give some further properties of the sequence k*=k*(n), n # L.

Lemma 9. For the solution X k*
n =[xj , j # Ik*] of B(n, k*) let Ik*=

[1, ..., n+2]"[ jk*], where k*=k*(n), jk*= jk*(n), n # L. Then we have

lim
n # L

k*(n)=� and lim
n # L

|k*(n)& jk*(n)|=�.

Proof of Lemma 9. 1. Let us assume that there exists a subsequence
L$ of L and some constant m # N such that

k*(n)�m for all n # L$.

For the solutions pk*
n and X k*

n =[xj , j # Ik*]=[x$1< } } } <x$n+1] of B(n, k*),
k*=k*(n), n # L$, we then have by Lemma 1 and (7) in Lemma 8

`

j{k*
j # Ik*

|xk*&xj |�|xk*&xk*+1 | `

j<k*
j # Ik*

|xk*&x j | `

j>k*+1
j # Ik*

|xk*&!j |

=|xk*&xk*+1 | `

j<k*
j # Ik*

|xk*&x j |
|!k*&!j |

`

j{k*, k*+1
j # Ik*

|xk*&!j |

�|xk*&xk*+1 | \D1

C1+
m

`

j{k*, k*+1
j # Ik*

|xk*&!j |

=|xk*&xk*+1 | \D1

C1+
m |xk*&!k*&1 |

|xk*&! jk*
|

`
n+2

j=1
| j&k*|�2

|xk*&!j |
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�|xk*&xk*+1 | \D1

C1+
m D4 dn(k*)

|xk*&! jk*
|

`
n+2

j=1
| j&k*|�2

|xk*&!j |

=|xk*&xk*+1 | \D1

C1+
m D4 dn(k*)

2
`

n+2

j=1
| j&k*|�2

|!k*&! j |,

since xk*=!k* according to Theorem 3. Choosing $>0 from Lemma 3 and
==$�2 in Lemma 8, this contradicts Lemma 3.

2. Let us assume that there exists a subsequence L$ of L and some
constant m # N such that

|k*(n)& jk*(n)|�m for all n # L$.

Then it follows that for some C>0 we have

|!k*&'jk*
|�C1 dn(k*, jk*)�Cdn(k*), for all n # L$.

For the sake of shortness we will only consider the case jk*(n)<k*(n).
Since !k*=xk* and !k*+1=xk*+1 , Lemma 3 and (7) yield

`
k*&2

j=1

|!k*&'j | `
n+2

j=k*+2

|!k*&!j |

=
|!k*&' jk*

|

|!k*&'k*&1 |
1

|!k*&!k*+1 |
`

j<k*
j # Ik*

|!k*&'j | `

j>k*
j # Ik*

|!k*&!j |

�
|!k*&' jk*

|

|!k*&'k*&1 |
1

|!k*&!k*+1 |
`

j{k*
j # Ik*

|!k*&xj |

=
|!k*&' jk*

|

|!k*&'k*&1 |
1

|xk*&xk*+1 |
`

j{k*
j # Ik*

|xk*&xj |

�
Cdn(k*)

D4 dn(k*)
C3

n$

1
dn(k*)2

1
2n

�C
1
n$

1
dn(k*)2

1
2n , for all sufficiently large n # L$,

for some suitable C>0.
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On the other hand, we have

`
k*&2

j=1

|!k*&'j | `
n+2

j=k*+2

|!k*&!j |

� `
k*&1

j=2

|!k*&!j | `
n+2

j=k*+2

|!k*&!j |

=
|!k*&!k*&1 |

|!k*&!1 |
`

n+2

j=1
| j&k*| �2

|!k*&!j |

�
D4 dn(k*)

2
`

n+2

j=1
| j&k*|�2

|!k*&!j |, for all sufficiently large n # L$.

Choosing ==$�2 in Lemma 8 we obtain a contradiction.
Hence, Lemma 9 is proved.

To complete the proof of our main Theorem 1 let pk*
n and Xk*

n =[xj , j # Ik*]
=[x$1< } } } <x$n+1] denote the solutions of B(n, k*), where k*=k*(n), n # L,
is defined in (6).

We recall that Ik*=Ik*(n)=[1, ..., n+2]"[ jk*], where jk*= jk*(n), n # L.
If jk*(n)>k*(n), we put l=l(n) :=3. If jk*(n)<k*(n), we choose l=

l(n) # [ jk*(n)+1, ..., k*(n)&1] as small as possible such that

|!j&!jk*
|

|!k*&!jk*
|
�

1
2

for all l(n)< j<k*(n).

By Lemma 9 it is easy to check that

lim
n # L

k*(n)&l(n)=�.

Further, we have

max
E j

n

_n(x) pk*
n (x)=&1 for all l(n)� j�k*(n),

and therefore

min
E j

n

| pk*
n (x)|=1 for all l(n)� j�k*(n).

We consider | pk*
n ( y)| at the point y= y(n)=('k*+!k*+1)�2, n # L.

For every n # L let us define points yj= yj (n) # E j
n , j # Ik*(n), by

yj= yj (n) :=!j , if l(n)� j�k*(n),

138 WOLFGANG GEHLEN



and

yj= yj (n) :=xj , for all other j # Ik*(n).

By the sign structure of pk*
n ( y j) and since | pk*

n ( yj)|�1, the Lagrange
interpolation formula yields

| pk*
n ( y)|=\ `

& # Ik*

| y& y& |+ :
j # Ik*

| pk*
n ( yj)|

>& # Ik*, &{ j | yj& y& |
1

| yj& y|

�\ `
& # Ik*

| y& y& |+ :
l< j<k*

1
>& # Ik*, &{ j | yj& y& |

1
| yj& y|

.

1. Since 1=| pk*
n (!k*)|�| pk*

n ( y)|�M, it follows similarly to the
second part of the proof of Lemma 8 that for some D>0

`

&{k*
& # Ik*

| y& y& |�D `

&{k*
& # Ik*

|!k*& y& |, for all sufficiently large n # L.

We skip the computation and just note that

\ `

&{k*
& # Ik*

|!k*& y& |
| y& y& | + }

pk*
n ( y)

pk*
n (!k*) }

remains bounded, as n # L increases. Here, it is essential that by (7)

| y&'k* |, | y&!k*+1 |�
D4

2
dn(k*), for all sufficiently large n # L.

(11)

Thus, since yk*=!k* , we have

| pk*
n ( y)|�D | y&!k* | `

&{k*
& # Ik*

|!k*& y& | :
l< j<k*

1
>& # Ik* , &{j | yj& y& |

1
| yj& y|

=D :
l< j<k*

>& # Ik*, &{k* |!k*& y& |

>& # Ik* , &{j |!j& y& |
| y&!k* |
| yj& y|

.

2. Next, we show that for some D>0

>& # Ik* , &{k* |!k*& y& |

>& # Ik* , &{j |!j& y& |
�D

dn( j)
dn(k*)

, for all l(n)< j<k*(n),

and all sufficiently large n # L.
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By the definition of yj we have

>& # Ik* , &{k* |!k*& y& |

>& # Ik* , &{j |!j& y& |

=
>& # Ik* , &{k* |!k*&!& |

>& # Ik* , &{j |!j&!& | \ `

&<l
& # Ik*

|!k*& y& | |!j&!& |

|!k*&!& | |!j& y& |+

_{ `

&>k*
& # Ik*

|!k*& y& | |!j&!& |
|!k*&!& | |!j& y& |= .

It is easy to check that each factor in ( } } } ) and [ } } } ] is greater than or
equal to 1, and we obtain

>& # Ik*, &{k* |!k*& y& |

>& # Ik* , &{j |!j& y& |
�

>& # Ik* , &{k* |!k*&!& |

>& # Ik* , &{j |!j&!& |
.

Since

|!j&!jk*
|

|!k*&!jk*
|
�

1
2

, for all l(n)< j<k*(n),

and by the definition of k*, we get that for all n # L

>& # Ik* , &{k* |!k*& y& |

>& # Ik* , &{j |!j& y& |

�
>& # Ik* , &{k* |!k*&!& |

>& # Ik* , &{j |!j&!& |

=
|(!k*&!k*&1)(!k*&!k*+1)|

|(! j&!j&1)(!j&! j+1)|

|!j&!jk*
|

|!k*&!jk*
|

_\ `
n+2

&=1
|&&k*|�2

|!k*&!& |+\ `
n+2

&=1
|&& j |�2

|! j&!& |+
&1

�
|(!k*&!k*&1)(!k*&!k*+1)|

|(! j&!j&1)(!j&! j+1)|
1
2

dn( j)3

dn(k*)3 , for all l(n)< j<k*(n).
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Lemma 1 and (7) yield that for some D>0

�
D2

4 dn(k*)2

C 2
1 dn( j)2

1
2

dn( j)3

dn(k*)3

�D
dn( j)

dn(k*)
, for all l(n)< j<k*(n),

and all sufficiently large n # L.

3. We now have that for some D>0

| pk*
n ( y)|�D :

l< j<k*

dn( j)
dn(k*)

| y&!k* |
| y j& y|

,

for all sufficiently large n # L. By Lemma 1 and (11) we obtain

�D :
l< j<k*

dn( j)
dn(k*)

D4 dn(k*)
2C1 dn( j, k*)

=D
D4

2C1

:
l< j<k*

dn( j)
dn( j, k*)

, for all sufficiently large n # L,

and Lemma 2(e) yields

�D
D4

2C1

(D2 log[k*(n)&l(n)]&C2), for all sufficiently large n # L.

Since limn # L k*(n)&l(n)=�, it follows that

lim
n # L

| pk*
n ( y)|=�,

which contradicts our principal assumption (3). Hence, Theorem 1 is
proven.

3. REMARK

For any subsequence L, where the number of sign components E 1
n , ..., E m(n)

n

is exactly m(n)=n+2, n # L, we have proved that there exist polynomials
pn # Pn , n # L, satisfying the assumptions of Theorem 2, and such that
limn # L &pn&=�. In this part of the proof only the alternation property of
the sign functions _n on E 1

n , ..., E n+2
n was used and no further reference was

made to the fact that _n and E 1
n , ..., E n+2

n are induced by the error func-
tions f (x)&qn*( f, x).
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Thus, we obtain the following technical Lemma that may be of interest
on its own.

Lemma. For each n # N0 let E 1
n< } } } <E n+2

n be arbitrary compact
subsets of [&1, 1]. Further, for each n # N0 , let _n be a sign function on
�n+2

j=1 E j
n such that

_n |E j
n
=$n(&1) j, for all 1� j�n+2,

with some $n # [&1, 1], n # N0 .
Then there exist polynomials pn # Pn , n # N0 , satisfying

&1�max
E j

n

_n(x) pn(x)�1, for all 1� j�n+2,

such that limn � � &pn&=�.
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